
Thinking debugging? Thinkwww.windbg.info

By Robert Kuster Posted : 01 Feb 2009

Updated : 17 Feb 2009

Common WinDbg Commands (Thematically Grouped)

1) Built-in help commands 9) Exceptions, events, and crash analysis 17) Information about variables

2) General WinDbg's commands (clear

screen, ..)
10) Loaded modules and image information 18) Memory

3) Debugging sessions (attach, detach, ..) 11) Process related information 19) Manipulating memory ranges

4) Expressions and commands 12) Thread related information 20) Memory: Heap

5) Debugger markup language (DML) 13) Breakpoints 21) Application Verifier

6) Main extensions 14) Tracing and stepping (F10, F11) 22) Logging extension (logexts.dll)

7) Symbols 15) Call stack

8) Sources 16) Registers

1) Built-in help commands

C md V ar i a n t s / P a r a ms D e s c r i p t i o n

?
?

? /D

Display regular commands

Display regular commands as DML

.help

.help

.help /D

.help /D a*

Display . commands

Display . commands in DML format (top bar of links is given)

Display . commands that start with a* (wildcard) as DML

.chain

.chain

.chain /D

Lists all loaded debugger extensions

Lists all loaded debugger extensions as DML (where extensions are linked

to a .extmatch)

.extmatch

.extmatch /e ExtDLL FunctionFilter

.extmatch /D /e ExtDLL FunctionFilter

Show all exported functions of an extension DLL. FunctionFilter= wildcard

string

Same in DML format (functions link to "!ExtName.help FuncName"

commands)

Example: .extmatch /D /e uext * (show all exported functions of

uext.dll)

.hh

.hh

.hh Text

Open WinDbg's help

Text = text to look up in the help file index

Example: .hh dt

2) General WinDbg's commands (show version, clear screen, etc.)

C md V ar i a n t s / P a r a ms D e s c r i p t i o n

version Dump version info of debugger and loaded extension DLLs

vercommand Dump command line that was used to start the debugger

vertarget Version of target computer

CTRL+ALT+V

Toggle verbose mode ON/OFF

In verbose mode some commands (such as register dumping) have more

detailed output.

n n [8 | 10 | 16] Set number base

.formats

.formats Expression Show number formats = evaluates a numerical expression or symbol and

displays it in multiple numerical formats (hex, decimal, octal, binary,

time, ..)

Example 1: .formats 5

Example 2: .formats poi(nLocal1) == .formats @@($!nLocal1)

.cls Clear screen

.lastevent
Displays the most recent exception or event that occurred (why the

debugger is waiting?)

.effmach

.effmach

.effmach .

.effmach #

.effmach x86 | amd64 | ia64 | ebc

Dump effective machine (x86, amd64, ..):

Use target computer's native processor mode

Use processor mode of the code that is executing for the most recent event

Use x86, amd64, ia64, or ebc processor mode

This setting influences many debugger features:

-> which processor's unwinder is used for stack tracing

-> which processor's register set is active

.time display time (system-up, process-up, kernel time, user time)

3) Debugging sessions (attach, detach, ..)

C md V ar i a n t s / P a r a ms D e s c r i p t i o n

.attach PID attach to a process

.detach
ends the debugging session, but leaves any user-mode target application

running

q
q, qq Quit = ends the debugging session and terminates the target application

Remote debugging: q= no effect; qq= terminates the debug server

.restart Restart target application

4) Expressions and commands

C md V ar i a n t s / P a r a ms D e s c r i p t i o n

; Command separator (cm1; cm2; ..)

?
? Expression

?? Expression

Evaluate expression (use default evaluator)

Evaluate c++ expression

.expr

.expr

.expr /q

.expr /s c++

.expr /s masm

Choose default expression evaluator

Show current evaluator

Show available evaluators

Set c++ as the default expression evaluator

Set masm as the default expression evaluator

*
* [any text] Comment Line Specifier

Terminated by: end of line

$$
$$ [any text] Comment Specifier

Terminated by: end of line OR semicolon

.echo

.echo String

.echo "String"

Echo Comment -> comment text + echo it

Terminated by: end of line OR semicolon

With the $$ token or the * token the debugger will ignore the inputted text

without echoing it.

5) Debugger markup language (DML)

Starting with the 6.6.07 version of the debugger a new mechanism for enhancing output from the debugger and extensions was included: DML.

DML allows output to include directives and extra non-display information in the form of tags.

Debugger user interfaces parse out the extra information to provide new behaviors.

DML is primarily intended to address two issues:

Linking of related information

Discoverability of debugger and extension functionality

C md V ar i a n t s / P a r a ms D e s c r i p t i o n

.dml_start Kick of to other DML commands

.prefer_dml
.prefer_dml [1 | 0] Global setting: should DML-enhanced commands default to DML?

Note that many commands like k, lm, .. output DML content thereafter.

.help /D .help has a new DML mode where a top bar of links is given

.chain /D .chain has a new DML mode where extensions are linked to a .extmatch

.extmatch /D
.extmatch has a new DML format where exported functions link to "!

ExtName.help FuncName" commands

lmD lm has a new DML mode where module names link to lmv commands

kM k has a new DML mode where frame numbers link to a .frame/dv

.dml_flow
.dml_flow StartAddr TargetAddr

Allows for interactive exploration of code flow for a function.

1. Builds a code flow graph for the function starting at the given start

address (similar to uf)

2. Shows the basic block given the target address plus links to

referring blocks and blocks referred to by the current block

Example: .dml_flow CreateRemoteThread CreateRemoteThread+30

6) Main extensions

C md V ar i a n t s / P a r a ms D i s p l a y s u p p o r t e d c o m ma n d s f o r . .

!Ext.help General extensions

!Exts.help -||-

!Uext.help User-Mode Extensions (non-OS specific)

!Ntsdexts.help User-Mode Extensions (OS specific)

!logexts.help Logger Extensions

!clr10\sos.help Debugging managed code

!wow64exts.help Wow64 debugger extensions

!Wdfkd.help Kernel-Mode driver framework extensions

!Gdikdx.help Graphics driver extensions

..

!NAME.help
!NAME.help FUNCTION

Display detailed help about an exported function

NAME = placeholder for extension DLL

FUNCTION = placeholder for exported function

Example: !Ntsdexts.help handle (show detailed help about !

Ntsdexts.handle)

7) Symbols

C md V ar i a n t s / P a r a ms D e s c r i p t i o n

ld
ld ModuleName

ld *

Load symbols for Module

Load symbols for all modules

!sym

!sym

!sym noisy

!sym quiet

Get state of symbol loading

Set noisy symbol loading (debugger displays info about its search for

symbols)

Set quiet symbol loading (=default)

x

x [Options] Module!Symbol

x /t ..

x /v ..

x /a ..

x /n ..

x /z ..

Examine symbols: displays symbols that match the specified pattern

with data type

verbose (symbol type and size)

sort by address

sort by name

sort by size ("size" of a function symbol is the size of the function in

memory)

ln

ln Addr

List nearest symbols = display the symbols at or near the given Addr.

Useful to:

determine what a pointer is pointing to

when looking at a corrupted stack to determine which procedure

made a call

.sympath
.sympath

.sympath+

Display or set symbol search path

Append directories to previous symbol path

.symopt

.symopt

.symopt+ Flags

.symopt- Flags

displays current symbol options

add option

remove option

.symfix

.symfix

.symfix+ DownstreamStore

Set symbol store path to automatically point to http://msdl.microsoft.com/

download/symbols

+ = append it to the existing path

DownstreamStore = directory to be used as a downstream store. Default is

WinDbgInstallationDir\Sym.

.reload

.reload

.reload [/f | /v]

.reload [/f | /v] Module

Reload symbol information for all modules**

f = force immediate symbol load (overrides lazy loading); v = verbose

mode

Module = for Module only

**Note: The .reload command does not actually cause symbol information

to be read. It just lets the debugger know that the symbol files may have

changed, or that a new module should be added to the module list. To force

actual symbol loading to occur use the /f option, or the ld (Load Symbols)

command.

Collapse

x *! list all modules

x ntdll!* list all symbols of ntdll

x /t /v MyDll!* list all symbol in MyDll with data type, symbol type and size

x kernel32!*LoadLib* list all symbols in kernel32 that contain the word LoadLib

.sympath+ C:\MoreSymbols add symbols from C:\MoreSymbols (folder location)

.reload /f @"ntdll.dll" Immediately reload symbols for ntdll.dll.

.reload /f @"C:\WINNT\System32\verifier.dll" Reload symbols for verifier. Use the given path.

Also check the "!lmi" command.

8) Sources

C md V ar i a n t s / P a r a ms D e s c r i p t i o n

.srcpath
.srcpath

.srcpath+ DIR

Display or set source search path

Append directory to the searched source path

.srcnoisy {1|0} Controls noisy source loading

.lines [-e | -d | -t] Toggle source line support: enable; disable; toggle

l (small letter L)

l+l, l-l

l+o, l-o

l+s, l-s

l+t, l-t

show line numbers

suppress all but [s]

source and line number

source mode vs. assembly mode

9) Exceptions, events, and crash analysis

C md V ar i a n t s / P a r a ms D e s c r i p t i o n

g

g

gH

gN

Go

Go exception handled

Go not handled

.lastevent What happened? Shows most recent event or exception

!analyze

!analyze -v

!analyze -hang

!analyze -f

Display information about the current exception or bug check; verbose

User mode: Analyzes the thread stack to determine whether any threads

are blocking other threads.

See an exception analysis even when the debugger does not detect an

exception.

sx

sx

sxe

sxd

sxn

sxi

sxr

Show all event filters with break status and handling

break first-chance

break second-chance

notify; don't break

ignore event

reset filter settings to default values

.exr
.exr-1

.exr Addr

display most recent exception record

display exception record at Addr

.ecxr
displays exception context record (registers) associated with the current

exception

!cppexr Addr Display content and type of C++ exception

Collapse

exr -1 display most recent exception

.exr 7c901230 display exception at address 7c901230

!cppexr 7c901230 display c++ exception at address 7c901230

10) Loaded modules and image information

C md V ar i a n t s / P a r a ms D e s c r i p t i o n

lm

lm[v | l | k | u | f] [m Pattern]

lmD

List modules; verbose | with loaded symbols | k-kernel or u-user only

symbol info | image path; pattern that the module name must match

DML mode of lm; lmv command links included in output

!dlls

!dlls

!dlls -i

!dlls -l

!dlls -m

!dlls -v

!dlls -c ModuleAddr

!dlls -?

all loaded modules with load count

by initialization order

by load order (default)

by memory order

with version info

only module at ModuleAddr

brief help

!imgreloc ImgBaseAddr information about relocated images

!lmi Module detailed info about a module (including exact symbol info)

!dh

!dh ImgBaseAddr

!dh -f ImgBaseAddr

!dh -s ImgBaseAddr

!dh -h

Dump headers for ImgBaseAddr

f = file headers only

s = section headers only

h = brief help

The !lmi extension extracts the most important information from the image

header and displays it in a concise summary format. It is often more useful

than !dh.

Collapse

lm display all loaded and unloaded modules

lmv m kernel32 display verbose (all possible) information for kernel32.dll

lmD DML variant of lm

!dlls -v -c kernel32 display information for kernel32.dll, including load-count

!lmi kernel32 display detailed information about kernel32, including symbol information

!dh kernel32 display headers for kernel32

11) Process related information

C md V ar i a n t s / P a r a ms D e s c r i p t i o n

!dml_proc
(DML) displays current processes and allows drilling into processes for more

information

| (pipe) Print status of all processes being debugged

.tlist lists all processes running on the system

!peb display formatted view of the process's environment block (PEB)

Collapse

!peb Dump formatted view of processes PEB (only some information)

r $peb Dump address ob PEB. $peb == pseudo-register

dt ntdll!_PEB Dump PEB struct

dt ntdll!_PEB @$peb -r Recursively (-r) dump PEB of our process

12) Thread related information

C md V ar i a n t s / P a r a ms D e s c r i p t i o n

~

~

~* [Command]

~. [Command]

~# [Command]

~Number [Command]

~~[TID] [Command]

~Ns

list threads

all threads

current thread

thread that caused the current event or exception

thread whose ordinal is Number

thread whose thread ID is TID (the brackets are required)

switch to thread N (new current thread)

[Command]: works for a few regular commands such as k, r

~e

~* e CommandString

~. e CommandString

~# e CommandString

~Number e CommandString

Execute thread-specific commands (CommandString = one or more

commands to be executed) for:

all threads

current thread

thread which caused the current event

thread with ordinal

~f ~Thread f Freeze thread (see ~ for Thread syntax)

~u ~Thread u Unfreeze thread (see ~ for Thread syntax)

~n ~Thread n Suspend thread = increment thread's suspend count

~m ~Thread m Resume thread = decrement thread's suspend count

!teb display formatted view of the thread's environment block (TEB)

!tls

!tls -1

!tls SlotIdx

!tls [-1 | SlotIdx] TebAddr

-1 = dump all slots for current thread

SlotIdx = dump only specified slot

TebAddr = specify thread; if omitted, the current thread is used

.ttime display thread times (user + kernel mode)

!runaway

[Flags: 0 | 1 | 2] display information about time consumed by each thread (0-user time, 1-

kernel time, 2-time elapsed since thread creation). quick way to find out

which threads are spinning out of control or consuming too much CPU time

!gle

!gle

!gle -all

Dump last error for current thread

Dump last error for all threads

Point of interest:

SetLastError(dwErrCode) checks the value of kernel32!

g_dwLastErrorToBreakOn and possibly executes a DbgBreakPoint.

if ((g_dwLastErrorToBreakOn != 0) && (dwErrCode ==

g_dwLastErrorToBreakOn))

DbgBreakPoint();

The downside is that SetLastError is only called from within KERNEL32.DLL.

Other calls to SetLastError are redirected to a function located in

NTDLL.DLL, RtlSetLastWin32Error.

!error
!error ErrValue

!error ErrValue 1

Decode and display information about an error value

Treat ErrValue value as an NTSTATUS code

Collapse

~* k call stack for all threads ~ !uniqstack

~2 f Freeze Thread TID=2

~# f Freeze the thread causing the current exception

~3 u Unfreeze Thread TID=3

~2e r; k; kd == ~2r; ~2k; ~2kd

~*e !gle will repeat every the extension command !gle for every single thread being debugged

!tls -1 Dump all TLS slots for current thread

!runaway 7 1 (user time) + 2 (kernel time) + 4 (time elapsed since thread start)

!teb Dump formatted view of our threads TEB (only some information)

dt ntdll!_TEB @$teb Dump TEB of current thread

13) Breakpoints

C md V ar i a n t s / P a r a ms D e s c r i p t i o n

bl List breakpoints

bc
bc *

bc # [#] [#]

Clear all breakpoints

Clear breakpoint #

be
be *

be # [#] [#]

Enable all bps

Enable bp #

bd
bd *

bd # [#] [#]

Disable all bps

Disable bp #

bp

bp [Addr]

bp [Addr] ["CmdString"]

[~Thrd] bp[#] [Options] [Addr] [Passes]

["CmdString"]

Set breakpoint at address

CmdString = Cmd1; Cmd2; .. Executed every time the BP is hit.

~Thrd == thread that the bp applies too.

= Breakpoint ID

Passes = Activate breakpoint after #Passes (it is ignored before)

bu

bu [Addr]

See bp ..

Set unresolved breakpoint. bp is set when the module gets loaded

bm

bm SymPattern

bm SymPattern ["CmdString"]

[~Thrd] bm [Options] SymPattern [#Passes]

["CmdString"]

Set symbol breakpoint. SymPattern can contain wildcards

CmdString = Cmd1; Cmd2; .. Executed every time the BP is hit.

~Thrd == thread that the bp applies too.

Passes = Activate breakpoint after #Passes (it is ignored before)

The syntax bm SymPattern is equivalent to using x SymPattern and

then using bu on each of the results.

ba

ba [r|w|e] [Size] Addr

[~Thrd] ba[#] [r|w|e] [Size] [Options] [Addr]

[Passes] ["CmdString"]

Break on Access: [r=read/write, w=write, e=execute], Size=[1|2|4 bytes]

[~Thrd] == thread that the bp applies too.

= Breakpoint ID

Passes = Activate breakpoint after #Passes (it is ignored before)

br br OldID NewID [OldID2 NewID2 ...] renumbers one or more breakpoints

Collapse

With bp, the breakpoint location is always converted to an address. In contrast, a bu or a bm breakpoint is always associated with the symbolic value.

Simple Examples

bp `mod!source.c:12` set breakpoint at specified source code

bm myprogram!mem* SymbolPattern is equivalent to using x SymbolPattern

bu myModule!func bp set as soon as myModule is loaded

ba w4 77a456a8 break on write access

bp @@(MyClass::MyMethod) break on methods (useful if the same method is overloaded and thus present on several addresses)

Breakpoitns with options

Breakpoint that is triggered only once

bp mod!addr /1

Breakpoint that will start hitting after k-1 passes

bp mod!addr k

Breakpoints with commands: The command will be executed when the breakpoint is hit.

Produce a log every time the breakpoint is hit

ba w4 81a578a8 "k;g"

Create a dump every time BP is hit

bu myModule!func ".dump c:\dump.dmp; g"

DllMain called for MYDLL -> check reason

bu MYDLL!DllMain "j (dwo(@esp+8) == 1) '.echo MYDLL!DllMain -> DLL_PROCESS_ATTACH; kn' ; 'g' "

LoadLibraryExW(anyDLL) called -> display name of anyDLL

bu kernel32!LoadLibraryExW ".echo LoadLibraryExW for ->; du dwo(@esp+4); g"

LoadLibraryExW(MYDLL) called? -> Break only if LoadLibrary is called for MyDLL

bu kernel32!LoadLibraryExW ";as /mu ${/v:MyAlias} poi(@esp+4); .if ($spat(\"${MyAlias}\", \"*MYDLL*\") != 0) { kn; } .else { g }"

The first parameter to LoadLibrary (at address ESP + 4) is a string pointer to the DLL name in question.
The MASM $spat operator will compare this pointer to a predefined string-wildcard, this is *MYDLL* in our example.
Unfortunately $spat can accept aliases or constants, but no memory pointers. This is why we store our string in question to an alias (MyAlias)
first.
Our kernel32!LoadLibraryExW breakpoint will hit only if the pattern compared by $spat matches. Otherwise the application will continue
executing.

Skip execution of a function

bu sioctl!DriverEntry "r eip = poi(@esp); r esp = @esp + 0xC; .echo sioctl!DriverEntry skipped; g"

Right at a function’s entry point the value found on the top of the stack contains the return address
r eip = poi(@esp) -> Set EIP (instruction pointer) to the value found at offset 0x0
DriverEntry has 2x4 byte parameters = 8 bytes + 4 bytes for the return address = 0xC
r esp = @esp + 0xC -> Add 0xC to Esp (the stack pointer), effectively unwinding the stack pointer

bu MyApp!WinMain "r eip = poi(@esp); r esp = @esp + 0x14; .echo WinSpy!WinMain entered; g"

WinMain has 4x4 byte parameters = 0x10 bytes + 4 bytes for the return address = 0x14

Howto set a brekpoint in your code programatically?

kernel32!DebugBreak

ntdll!DbgBreakPoint

__asm int 3 (x86 only)

14) Tracing and stepping (F10, F11)

Each step executes either a single assembly instruction or a single source line, depending on whether the debugger is in assembly mode or

source mode.

Use the l+t and l-t commands or the buttons on theWinDbg toolbar to switch between these modes.

C md V ar i a n t s / P a r a ms D e s c r i p t i o n

g (F5)

g

gu

Go (F5)

Go up = execute until the current function is complete

gu ~= g @$ra

gu ~= bp /1 /c @$csp @$ra;g

-> $csp = same as esp on x86

-> $ra = The return address currently on the stack

p (F10)

p

pr

p Count

p [Count] "Command"

p =StartAddress [Count] ["Command"]

[~Thread] p [=StartAddress] [Count]

["Command"]

Single step - executes a single instruction or source line. Subroutines are

treated as a single step.

Toggle display of registers and flags

Count = count of instructions or source lines to step through before

stopping

Command = debugger command to be executed after the step is performed

StartAddress = Causes execution to begin at the specified address. Default

is the current EIP.

~Thread = The specified thread is thawed and all others frozen

t (F11)
t

..

Single trace - executes a single instruction or source line. For subroutines

each step is traced as well.

pt

pt

..

Step to next return - similar to the GU (go up), but staying in context of

the current function

If EIP is already on a return instruction, the entire return is executed. After

this return is returned, execution will continue until another return is

reached.

tt

tt

..

Trace to next return - similar to the GU (go up), but staying in context of

the current function

If EIP is already on a return instruction, the debugger traces into the return

and continues executing until another return is reached.

pc

pc

..

Step to next call - executes the program until a call instruction is reached

If EIP is already on a call instruction, the entire call will be executed. After

this call is returned execution will continue until another call is reached.

tc

tc

..

Trace to next call - executes the program until a call instruction is

reached

If EIP is already on a call instruction, the debugger will trace into the call

and continue executing until another call is reached.

pa

pa StopAddr

par

pa StopAddr "Command"

pa =StartAddress StopAddr ["Command"]

Step to address; StopAddr = address at which execution will stop

Called functions are treated as a single unit

Toggle display of registers and flags

Command = debugger command to be executed after the step is performed

StartAddress = Causes execution to begin at the specified address. Default

is the current EIP.

ta
ta StopAddr

..

Trace to address; StopAddr = address at which execution will stop

Called functions are traced as well

wt wt

wt [Options] [= StartAddr] [EndAddr]

wt -l Depth ..

wt -m Module [-m Module2] ..

wt -i Module [-i Module2] ..

wt -oa ..

wt -or ..

wt -oR ..

wt -nc ..

wt -ns ..

wt -nw ..

Trace and watch data. Go to the beginning of a function and do awt. It

will run through the entire function and display statistics.

StartAddr = execution begin; EndAddr = address at which to end tracing

(default = after RET of current function)

l = maximum depth of traced calls

m = restrict tracing to Module

i = ignore code from Module

oa = dump actual address of call sites

or = dump return register values (EAX value) of sub-functions

oR = dump return register values (EAX value) in the appropriate type

nc = no info for individual calls

ns = no summary info

ns = no warnings

.step_filter

.step_filter

.step_filter "FilerList"

.step_filter /c

Dump current filter list = functions that are skipped when tracing (t, ta, tc)

FilterList = Filter 1; Filter 2; ... symbols associated with functions to be

stepped over (skipped)

clear the filter list

.step_filter is not very useful in assembly mode, as each function call is on

a different line.

Collapse

g go

g `:123`; ? poi(counter); g executes the current program to source line 123; print the value of counter; resume execution

p single step

pr toggle displaying of registers

p 5 "kb" 5x steps, execute "kb" thereafter

pc step to next CALL instruction

pa 7c801b0b step until 7c801b0b is reached

wt trace and watch sub-functions

wt -l 4 -oR trace sub-functions to depth 4, display their return values

15) Call stack

C md V ar i a n t s / P a r a ms D e s c r i p t i o n

k

k [n] [f] [L] [#Frames]

kb ...

kp ...

kP ...

kv ...

dump stack; n = with frame #; f = distance between adjacent frames; L =

omit source lines; number of stack frames to display

first 3 params

all params: param type + name + value

all params formatted (new line)

FPO info, calling convention

kd kd [WordCnt] display raw stack data + possible symbol info == dds esp

kM DML variant with links to .frame #;dv

.kframes Set stack length. The default is 20 (0x14).

.frame

.frame

.frame #

.frame /r [#]

show current frame

specify frame #

show register values

The .frame command specifies which local context (scope) will be used to

interpret local variables, or displays the current local context.

When executing a near call, the processor pushes the value of the EIP

register (which contains the offset of the instruction following the CALL

instruction) onto the stack (for use later as a return-instruction pointer).

This is the first step in building a frame. Each time a function call is made,

another frame is created so that the called function can access arguments,

create local variables, and provide a mechanism to return to calling

function. The composition of the frame is dependant on the function calling

convention.

!uniqstack

!uniqstack

!uniqstack [b|v|p] [n]

!uniqstack -?

show stacks for all threads

[b = first 3 params, v = FPO + calling convention, p = all params: param

type + name + value], [n = with frame #]

brief help

!findstack

!findstack Symbol

!findstack Symbol [0|1|2]

!findstack -?

locate all stacks that contain Symbol or module

[0 = show only TID, 1 = TID + frames, 2 = entire thread stack]

brief help

Collapse

k display call stack

kn call stack with frame numbers

kb display call stack with first 3 params

kb 5 display first 5 frames only

To get more than 3 Function Arguments from the stack

dd ChildEBP+8 (Parameters start at ChildEBP+8)

dd ChildEBP+8 (frame X) == dd ESP (frame X-1)

!uniqstack get all stacks of our process (one for each thread)

!findstack kernel32 2 display all stacks that contain "kernel32"

.frame show current frame

.frame 2 set frame 2 for the local context

.frame /r 0d display registers in frame 0

16) Registers

C md V ar i a n t s / P a r a ms D e s c r i p t i o n

r

r

r Reg1, Reg2

r Reg=Value

r Reg:Type

r Reg:[Num]Type

~Thread r [Reg:[Num]Type]

Dump all registers

Dump only specified registers (i.e.: r eax, edx)

Value to assign to the register (i.e.: r eax=5, edx=6)

Type = data format in which to display the register (i.e.: r eax:uw)

ib = Signed byte

ub = Unsigned byte

iw = Signed word (2b)

uw = Unsigned word (2b)

id = Signed dword (4b)

ud = Unsigned dword (4b)

iq = Signed qword (8b)

uq = Unsigned qword (8b)

f = 32-bit floating-point

d = 64-bit floating-point

Num = number of elements to display (i.e.: r eax:1uw)

Default is full register length, thus r eax:uw would display two values as

EAX is a 32-bit register.

Thread = thread from which the registers are to be read (i.e.: ~1 r eax)

rM

rM Mask

rM Mask Reg1, Reg2

rM Mask Reg=Value

..

Dump register types specified by Mask

Dump only specified registers from current mask

Value to assign to the register

Flags for Mask

0x1 = basic integer registers

0x4 = floating-point registers == rF

0x8 = segment registers

0x10 = MMX registers

0x20 = Debug registers

0x40 = SSE XMM registers == rX

rF

rF

rF Reg1, Reg2

rF Reg=Value

..

Dump all floating-point registers == rM 0x4

Dump only specified floating-point registers

Value to assign to the register

rX

rX

rX Reg1, Reg2

rX Reg=Value

..

Dump all SSE XMM registers == rM 0x40

Dump only specified SSE XMM registers

Value to assign to the register

rm

rm

rm ?

rm Mask

Dump default register mask. This mask controls how registers are displayed

by the "r".

Dump a list of possible Mask bits

Specify the mask to use when displaying the registers.

Collapse

rm ? show possible bit mask

rm 1 enable integer registers only

r dump all integer registers

r eax, edx dump only eax and edx

r eax=5, edx=6 assign new values to eax and edx

r eax:1ub dump only the first byte from eax

rm 0x20 enable debug register mask

r dump debug registers

rF dump all floating point register

rM 0x4 dump all floating point register

rm 0x4; r dump all floating point registers

17) Information about variables

C md V ar i a n t s / P a r a ms D e s c r i p t i o n

dt

dt -h

dt [mod!]Name

dt [mod!]Name Field [Field]

dt [mod!]Name [Field] Addr

dt [mod!]Name*

dt [-n|y] [mod!]Name [-n|y] [Field] [Addr]

dt [-n|y] [mod!]Name [-n|y] [Field] [Addr] -

abcehioprsv

Brief help

Dump variable info

Dump only 'field-name(s)' (struct or unions)

Addr of struct to be dumped

list symbols (wildcard)

-n Name = param is a name (use if name can be mistaken as an address)

-y Name = partially match instead of default exact match

-a = Shows array elements in new line with its index

-b = Dump only contiguous block of struct

-c = Compact output (all fields in one line)

-i = Does not indent the subtypes

-l ListField = Field which is pointer to the next element in list

-o = Omit the offset value (fields of struct)

-p = Dump from physical address

-r[l] = Recursively dump subtypes/fields (up to l levels)

-s [size] = For enumeration only, enumerate types only of given size.

-v = Verbose output.

dv

dv

dv Pattern

dv [/i /t /V] [Pattern]

dv [/i /t /V /a /n /z] [Pattern]

display local variables and parameters

vars matching Pattern

i = type (local, global, parameter), t = data type, V = memory address or

register location

a = sort by Addr, n = sort by name, z = sort by size

Collapse

dt ntdll!_PEB* list all variables that contain the word _PEB

dt ntdll!_PEB* -v list with verbose output (address and size included)

dt ntdll!_PEB* -v -s 9 list only symbols whose size is 9 bytes

dt ntdll!_PEB dump _PEB info

dt ntdll!_PEB @$peb dump _PEB for our process

dt ntdll!_PEB 7efde000
dump _PEB at Addr 7efde000

You can get our process's PEB address with "r @$peb" or with "!peb".

dt ntdll!_PEB Ldr SessionId dump only PEB's Ldr and SessionId fields

dt ntdll!_PEB Ldr -y OS* dump Ldr field + all fields that start with OS*

dt mod!var m_cs. dump m_cs and expand its subfields

dt mod!var m_cs.. expand its subfields for 2 levels

dt ntdll!_PEB -r2 dump recursively (2 levels)

dv /t /i /V

dump local variables with type information (/t), addresses and EBP offsets (/V), classify them into categories (/i)

Note: dv will also display the value of a THIS pointer for methods called with the "this calling-convention".

BUG: You must first execute a few commands before dv displays the correct value.

Right at a function's entry point the THIS pointer is present in ECX, so you can easily get it from there.

18) Memory

C md V ar i a n t s / P a r a ms D e s c r i p t i o n

d*

d[a| u| b| w| W| d| c| q| f| D] [/c #] [Addr]

dy[b | d] ..

Display memory [#columns to display]

a = ascii chars

u = Unicode chars

b = byte + ascii

w = word (2b)

W = word (2b) + ascii

d = dword (4b)

c = dword (4b) + ascii

q = qword (8b)

f = floating point (single precision - 4b)

D = floating point (double precision - 8b)

b = binary + byte

d = binary + dword

e*

e[b | w | d | q | f | D] Addr Value

e[a | u | za | zu] Addr "String"

Edit memory

b = byte

w = word (2b)

d = dword (4b)

q = qword (8b)

f = floating point (single precision - 4b)

D = floating point (double precision - 8b)

a = ascii string

za = ascii string (NULL-terminated)

u = Unicode string

zu = Unicode string (NULL-terminated)

ds, dS ds [/c #] [Addr]

dS [/c #] [Addr]

Dump string struct (struct! not null-delimited char sequence)

s = STRING or ANSI_STRING

S = UNICODE_STRING

d*s
dds [/c #] [Addr]

dqs [/c #] [Addr]

Display words and symbols (memory at Addr is assumed to be a series

of addresses in the symbol table)

dds = dwords (4b)

dqs = qwords (8b)

dd*, dq*, dp*

dd*

dq*

dp*

d*a

d*u

d*p

Display referenced memory = display pointer at specified Addr,

dereference it, and then display the memory at the resulting location in a

variety of formats.

the 2nd char determines the pointer size used:

dd* -> 32-bit pointer used

dq* -> 64-bit pointer used

dp* -> standard size: 32-bit or 64-bit, depending on the CPU architecture

the 3rd char determines how the dereferenced memory is displayed:

d*a -> dereferenced mem as asci chars

d*u -> dereferenced mem as Unicode chars

d*p -> dereferenced mem as dword or qword, depending on the CPU

architecture. If this value matches any known symbol, this symbol is

displayed as well.

dl dl[b] Addr MaxCount Size

Display linked list (LIST_ENTRY or SINGLE_LIST_ENTRY)

b = dump in reverse order (follow BLinks instead of FLinks)

Addr = start address of the list

MaxCount = max # elements to dump

Size = Size of each element

Use !list to execute some command for each element in the list.

!address

!address -?

!address Addr

!address -summary

!address -RegionUsageXXX

Display info about the memory used by the target process

Brief help

Dump info for region with Addr

Dump summary info for process

Dump specified regions (RegionUsageStack, RegionUsagePageHeap, ..)

!vprot
!vprot -?

!vprot Addr

Brief Help

Dump virtual memory protection info

!mapped_file
!mapped_file -?

!mapped_file Addr

Brief Help

Dump name of the file containing given Addr

Collapse

dd 0046c6b0 display dwords at 0046c6b0

dd 0046c6b0 L1 display 1 dword at 0046c6b0

dd 0046c6b0 L3 display 3 dwords at 0046c6b0

du 0046c6b0 display Unicode chars at 0046c6b0

du 0046c6b0 L5 display 5 Unicode chars at 0046c6b0

dds esp == kd display words and symbols on stack

!mapped_file 00400000 Dump name of file containing address 00400000

!address show all memory regions of our process

!address -RegionUsageStack show all stack regions of our process

!address esp

show info for committed sub-region for our thread's stack.

Note: For stack overflows SubRegionSize (size of committed memory) will be large, i.e.:

 AllocBase : SubRegionBase - SubRegionSize

 001e0000 : 002d6000 - 0000a000

Determine stack usage for a thread

 Stack Identifier Memory Identifier ^

-------------- <- _TEB.StackBase SubRegionBase3 + SubRegionSize3

| |

| MEM_COMMIT |

| |

|------------| <- _TEB.StackLimit SubRegionBase3 ^, SubRegionBase2 + SubRegionSize2

| PAGE_GUARD |

|------------| SubRegionBase2 ^, SubRegionBase1 + SubRegionSize1

| |

|MEM_RESERVED|

| |

|------------| <- _TEB.DeallocationStack AllocationBase or RegionBase, SubRegionBase1 ^

 DeallocationStack: dt ntdll!_TEB TebAddr DeallocationStack

From MSDN CreateThread > dwStackSize > "Thread Stack Size":

"Each new thread receives its own stack space, consisting of both committed and reserved memory. By default, each thread uses 1 Mb of reserved memory,

and one page of committed memory. The system will commit one page block from the reserved stack memory as needed."

19) Manipulating memory ranges

C md V ar i a n t s / P a r a ms D e s c r i p t i o n

c c Range DestAddr Compare memory

m m Range DestAddr Move memory

f f Range Pattern Fill memory. Pattern = a series of bytes (numeric or ASCII chars)

s

s Range Pattern

s -[Flags]b Range Pattern

s -[Flags]w Range 'Pattern'

s -[Flags]d Range 'Pattern'

s -[Flags]q Range 'Pattern'

s -[Flags]a Range "Pattern"

s -[Flags]u Range "Pattern"

s -[Flags,l length]sa Range

s -[Flags,l length]su Range

s -[Flags]v Range Object

Search memory

b = byte (default value)

Pattern = a series of bytes (numeric or ASCII chars)

w = word (2b)

d = dword (4b)

q = qword (8b)

Pattern = enclosed in single quotation marks (for example, 'Tag7')

a = ascii string (must not be null-terminated)

u = Unicode string (must not be null-terminated)

Pattern = enclosed in double quotation marks (for example, "This string")

Search for any memory containing printable ascii strings

Search for any memory containing printable Unicode strings

Length = minimum length of such strings; the default is 3 chars

Search for objects of the same type.

Object = Addr of a pointer to the Object or of the Object itself

Flags

w = search only writable memory

1 = output only addresses of search matches (useful if you are using

the .foreach)

Flags must be surrounded by a single set of brackets without spaces.

Example: s -[swl 10]Type Range Pattern

.holdmem

.holdmem -a Range

.holdmem -o

.holdmem -c Range

.holdmem -D

.holdmem -d { Range | Address }

Hold and compare memory. The comparison is made byte-for-byte

Memory range to safe

Display all saved memory ranges

Compares Range to all saved memory ranges

Delete all saved memory ranges

Delete specified memory ranges (any saved range containing Addr or

overlapping with Range)

Collapse

c Addr (Addr+100) DestAddr compare 100 bytes at Addr with DestAddr

c Addr L100 DestAddr -||-

m Addr L20 DestAddr move 20 bytes from Addr to DestAddr

f Addr L20 'A' 'B' 'C' fill specified memory location with the pattern "ABC", repeated several times

f Addr L20 41 42 43 -||-

s 0012ff40 L20 'H' 'e' 'l' 'l' 'o' search memory locations 0012FF40 through 0012FF5F for the pattern "Hello"

s 0012ff40 L20 48 65 6c 6c 6f -||-

s -a 0012ff40 L20 "Hello" -||-

s -[w]a 0012ff40 L20 "Hello" search only writable memory

20) Memory: Heap

C md V ar i a n t s / P a r a ms D e s c r i p t i o n

!heap

!heap -?

!heap

!heap -h

!heap -h [HeapAddr | Idx | 0]

!heap -v [HeapAddr | Idx | 0]

!heap -s [HeapAddr | 0]

!heap -i [HeapAddr]

!heap -x [-v] Address

!heap -l

Brief help

List heaps with index and HeapAddr

List heaps with index and range (= startAddr(=HeapAddr), endAddr)

Detailed heap info [Idx = heap Idx, 0 = all heaps]

Validate heap [Idx = heap Idx, 0 = all heaps]

Summary info, i.e. reserved and committed memory [Idx = heap Idx,

0 = all heaps]

Detailed info for a block at given address

Search heap block containing the address (v = search the whole process

virtual space)

Search for potentially leaked heap blocks

!heap -b, -B

!heap Heap -b [alloc | realloc | free] [Tag]

!heap Heap -B [alloc | realloc | free]

Set conditional breakpoint in the heap manager [Heap = HeapAddr | Idx |

0]

Remove a conditional breakpoint

!heap -flt
!heap -flt s Size

!heap -flt r SizeMin SizeMax

Dump info for allocations matching the specified size

Filter by range

!heap -stat

!heap -stat

!heap -stat -h [HeapHandle | 0]

Dump heap handle list

Dump usage statistic for every AllocSize [HeapHandle = given heap | 0 =

all heaps].

The statistic includes AllocSize, #blocks, TotalMem for each AllocSize.

!heap -p

!heap -p -?

!heap -p

!heap -p -h HeapHandle

!heap -p -a UserAddr

!heap -p -all

Extended page heap help

Summary for NtGlobalFlag, HeapHandle + NormalHeap list **

Detailed info about a page heap with Handle

Details of heap allocation containing UserAddr. Prints backtraces when

available.

Details of all allocations in all heaps in the process.

The output includes UserAddr and AllocSize for every HeapAlloc call.

It seems that the following applies for windows XP SP2:

a) Normal heap

1. CreateHeap -> creates a _HEAP

2. AllocHeap -> creates a _HEAP_ENTRY

b) Page heap enabled (gflags.exe /i +hpa)

1. CreateHeap -> creates a _DPH_HEAP_ROOT (+ _HEAP + 2x _HEAP_ENTRY)**

2. AllocHeap -> creates a _DPH_HEAP_BLOCK

** With page heap enabled there will still be a _HEAP with two constant _HEAP_ENTRY's for every CreateHeap call.

T e rm D e s c r i p t i o n H e a p t yp e

HeapHandle
= value returned by HeapCreate or GetProcessHeap

For normal heap: HeapHandle == HeapStartAddr
Normal & page

HeapAddr = startAddr = NormalHeap Normal & page

UserAddr, UserPtr
= value in the range [HeapAlloc...HeapAlloc+AllocSize]

For normal heap this range is further within Heap[startAddr-endAddr]
Normal & page

UserSize = AllocSize (value passed to HeapAlloc) Normal & page

_HEAP

= HeapHandle = HeapStartAddr

For every HeapCreate a _HEAP struct is created.

You can use "!heap -p -all" to get these addresses.

Normal heap

_HEAP_ENTRY
For every HeapAlloc a _HEAP_ENTRY is created.

You can use "!heap -p -all" to get these addresses.
Normal heap

_DPH_HEAP_ROOT

= usually HeapHandle + 0x1000

For every HeapCreate a _DPH_HEAP_ROOT is created.

You can use "!heap -p -all" to get these addresses.

Page heap

_DPH_HEAP_BLOCK
For every HeapAlloc a _DPH_HEAP_BLOCK is created.

You can use "!heap -p -all" to get these addresses.
Page heap

Collapse

dt ntdll!_HEAP dump _HEAP struct

dt ntdll!_DPH_HEAP_ROOT

dump _DPH_HEAP_ROOT struct.

Enable page heap. Then you can use "!heap -p -all" to get addresses of actual _DPH_HEAP_ROOT structs in your

process.

dt ntdll!

_DPH_HEAP_BLOCK

dump _DPH_HEAP_BLOCK struct.

Enable page heap. Then you can use "!heap -p -all" to get addresses of actual _DPH_HEAP_BLOCK structs in your

process.

!heap list all heaps with index and HeapAddr

!heap -h list all heaps with range information (startAddr, endAddr)

!heap -h 1 detailed heap info for heap with index 1

!heap -s 0 Summary for all heaps (reserved and committed memory, ..)

!heap -flt s 20 Dump heap allocations of size 20 bytes

!heap -stat Dump HeapHandle list. HeapHandle = value returned by HeapCreate or GetProcessHeap

!heap -stat -h 00150000 Dump usage statistic for HeapHandle = 00150000

!heap 2 -b alloc mtag Breakpoint on HeapAlloc calls with TAG=mtag in heap with index 2

!heap -p Dump heap handle list

!heap -p -a 014c6fb0 Details of heap allocation containing address 014c6fb0 + call-stack if available

!heap -p -all Dump details of all allocations in all heaps in the process

Who allocated memory - who called HeapAlloc?

1. Select "Create user mode stack trace database" for your image in GFlags (gflags.exe /i +ust)

2. From WinDbg's command line do a !heap -p -a , where is the address of your allocation ***.

3. While !heap -p -a will dump a call-stack, no source information will be included.

4. To get source information you must additionally enable page heap in step 1 (gflags.exe /i +ust +hpa)

5. Do a dt ntdll!_DPH_HEAP_BLOCK StackTrace , where is the DPH_HEAP_BLOCK address retrieved in step 3.

6. Do a dds ", where is the value retrieved in step 5.

Note that dds will dump the stack with source information included.

Who created a heap - who called HeapCreate?

1. Select "Create user mode stack trace database" and "Enable page heap" for your image in GFlags (gflags.exe /i +ust +hpa)

2. a) From WinDbg's command line do a !heap -p -h , where is the value returned by HeapCreate. You can do a !heap -stat or !heap -p to get all

heap handles of your process.

b) Alternatively you can use !heap -p -all to get addresses of all _DPH_HEAP_ROOT's of your process directly.

3. Do a dt ntdll!_DPH_HEAP_ROOT CreateStackTrace , where is the address of a _DPH_HEAP_ROOT retrieved in step 2

4. Do a dds , where is the value retrieved in step 3.

Finding memory leaks

From WinDbg's command line do a !address –summary.

If RegionUsageHeap or RegionUsagePageHeap are growing, then you might have a memory leak on the heap. Proceed with the following steps.

1. Enable "Create user mode stack trace database" for your image in GFlags (gflags.exe /i +ust)

2. From WinDbg's command line do a !heap -stat, to get all active heap blocks and their handles.

3. Do a !heap -stat -h 0. This will list down handle specific allocation statistics for every AllocSize.

For every AllocSize the following is listed: AllocSize, #blocks, and TotalMem. Take the AllocSize with maximum TotalMem.

4. Do a !heap -flt s . =AllocSize that we determined in the previous step. This command will list down all blocks with that particular size.

5. Do a !heap -p -a to get the stack trace from where you have allocated that much bytes. Use the that you got in step 4.

6. To get source information you must additionally enable page heap in step 1 (gflags.exe /i +ust +hpa)

7. Do a dt ntdll!_DPH_HEAP_BLOCK StackTrace , where is the DPH_HEAP_BLOCK address retrieved in step 5.

8. Do a dds ", where is the value retrieved in step 7.

Note that dds will dump the stack with source information included.

*** What is a ?

1. is usually the address returned by HeapAlloc:

int AllocSyze = 0x100000; // == 1 MB

BYTE* pUserAddr = (BYTE*) HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, AllocSyze);

2. Often any address in the range [UserAddr....UserAddr+AlloSize] is also a valid parameter:

!heap -p -a [UserAddr....UserAddr+AlloSize]

21) Application Verifier

Application Verifier profiles and tracks Microsoft Win32 APIs (heap, handles, locks, threads, DLL load/unload, and more), Exceptions, Kernel

objects, Registry, File system. With the !avrf extension we get access to this tracking information!

C md V ar i a n t s / P a r a ms D e s c r i p t i o n

!avrf
Displays Application Verifier options. If an Application Verifier Stop has

occurred, reveal the nature of the stop and what caused it.

!avrf

-?

-vs N

-vs -a ADDR

-hp N

-hp -a ADDR

-cs N

-cs -a ADDR

-dlls N

-ex N

-cnt

Brief help

Dump last N entries from vspace log (MapViewOfFile, UnmapViewOfFile, ..).

Searches ADDR in the vspace log.

HeapAlloc, HeapFree, new, and delete log

Searches ADDR in the heap log.

DeleteCriticalSectionAPI log (last #Entries). ~CCriticalSection calls this

implicitly.

Searches ADDR in the critical section delete log.

LoadLibrary/FreeLibrary log

exception log

Last Updated: 17 Feb 2009 Article Copyright 2009 by Robert Kuster
Everything else Copyright © 2009 www.windbg.info

Between 1 November 2007 and 31 Januar 2009 this article was published on software.rkuster.com where it was viewed 28.705 times.

Visit http://windbg.info/doc/1-common-cmds.html to post and view comments on this article.

-threads

-trm

-trace INDEX

-brk [INDEX]

global counters (WaitForSingleObject, HeapAllocation calls, ...)

thread information + start parameters for child threads

TerminateThread API log

dump stack trace with INDEX.

dump or set/reset break triggers.

22) Logging extension (logexts.dll)

You must enable the following options for you image in GFlags:

-> "Create user mode stack trace database"

-> "Stack Backtrace: (Megs)" -> 10

-> It seems that you sometimes also need to check and specify the "Debugger" field in GFlags

C md V ar i a n t s / P a r a ms D e s c r i p t i o n

!logexts.help displays all Logexts.dll extension commands

!loge
!loge [dir] Enable logging + possibly initialize it if not yet done. Output directory

optional.

!logi
Initialize (=inject Logger into the target application) but don't enable

logging.

!logd Disable logging

!logo

!logo

!logo [e|d] [d|t|v]

List output settings

Enable/disable [d - Debugger, t - Text file, v - Verbose log] output. Use

logviewer.exe to examine Verbose logs.

!logc

!logc

!logc p #

!logc [e|d] *

!logc [e|d] # [#] [#]

List all categories

List APIs in category #

Enable/disable all categories

Enable/disable category #

!logb
!logb p

!logb f

Print buffer contents to debugger

Flush buffer to log files

!logm
!logm

!logm [i|x] [DLL] [DLL]

Display module inclusion/exclusion list

Specify module inclusion/exclusion list

Collapse

Enable 19-ProcessesAndThreads and 22-StringManipulation logging:

!loge Enable logging

!logc d * Disable all categories

!logc p 19 Display APIs of category 19

logc e 19 22 Enable category 19 and 22

!logo d v Disable verbose output

!logo d t Disable text output

!logo e d Enable debugger output

